Contests | Virtual Contests | Problems | Submit | Runs Status | Rank List | Forum |

Time Limit: 1.0 Seconds Memory Limit: 65536K

Total Runs: 1147 Accepted Runs: 740

What do you do if you need to copy a 560x400mm image onto
a standard sheet of US letter-size paper (which is about 216x280mm),
while keeping the image as large as possible? You can rotate the
image 90 degrees (so that it is in "landscape" mode), then
reduce it to 50% of its original size so that it is 200x280mm. Then
it will fit on the paper without overlapping any edges. Your job is
to solve this problem in general.

**Input:** The input consists of one or more test cases, each of
which is a single line containing four positive integers *A*,
*B*, *C*, and *D*, separated by a space, representing
an *A*x*B*mm image and a *C*x*D*mm piece of paper.
All inputs will be less than one thousand. Following the test cases
is a line containing four zeros that signals the end of the input.

**Output:** For each test case, if the image fits on the sheet
of paper without changing its size (but rotating it if necessary),
then the output is 100%. If the image must be reduced in order to
fit, the output is the largest *integer* percentage of its
original size that will fit (rotating it if necessary). Output the
percentage exactly as shown in the examples below. You can assume
that no image will need to be reduced to less than 1% of its original
size, so the answer will always be an integer percentage between 1%
and 100%, inclusive.

Example input: |
Example output: |

560 400 218 280 10 25 88 10 8 13 5 1 9 13 10 6 199 333 40 2 75 90 218 280 999 99 1 10 0 0 0 0 |
50% 100% 12% 66% 1% 100% 1% |

Maintance:Fxz. Developer: SuperHacker, G.D.Retop, Fxz